|                         |           |                                             | , ,       |
|-------------------------|-----------|---------------------------------------------|-----------|
| Sn(1)—O(B)              | 2.100 (2) | Sn(2)—C(212)                                | 2.102 (5) |
| Sn(1)-O(110)            | 2.090 (3) | O(B)—Li                                     | 2.342 (9) |
| Sn(1)—O(120)            | 2.092 (3) | O(110)—C(110)                               | 1.427 (6) |
| Sn(1)—C(116)            | 2.113 (5) | O(120)—C(120)                               | 1.419 (7) |
| Sn(1)—C(122)            | 2.107 (5) | O(120)—Li                                   | 1.884 (9) |
| Sn(2)—O(B)              | 2.088 (4) | O(210)—C(210)                               | 1.425 (6) |
| Sn(2)—O(210)            | 2.091 (3) | O(210)—Li                                   | 1.89 (1)  |
| O(B)—Sn(1)—O(110)       | 83.2 (1)  | C(212)—Sn(2)—C(212')                        | 125.0 (3) |
| O(B)-Sn(1)-O(120)       | 84.07 (9) | $Sn(1) \rightarrow O(B) \rightarrow Sn(1')$ | 119.5 (2) |
| O(B)—Sn(1)—C(116)       | 116.8 (2) | $Sn(1) \rightarrow O(B) \rightarrow Sn(2)$  | 120.3 (1) |
| O(B) - Sn(1) - C(122)   | 117.2 (2) | Sn(1)—O(B)—Li                               | 89.5 (2)  |
| O(110)—Sn(1)—O(120)     | 167.3 (1) | Sn(2)—O(B)—Li                               | 90.1 (3)  |
| O(110)-Sn(1)-C(116)     | 81.0 (2)  | Li—O(B)—Li'                                 | 180 (1)   |
| O(110)-Sn(1)-C(122)     | 105.2 (2) | Sn(1)—O(110)—C(110)                         | 113.8 (3) |
| O(120) - Sn(1) - C(116) | 104.1 (2) | Sn(1) - O(120) - C(120)                     | 114.0 (3) |
| O(120)-Sn(1)-C(122)     | 81.3 (2)  | Sn(1)-O(120)-Li                             | 103.9 (3) |
| C(116)-Sn(1)-C(122)     | 126.0 (2) | C(120)—O(120)—Li                            | 124.9 (4) |
| O(B)Sn(2)O(210)         | 83.95 (9) | Sn(2)—O(210)—C(210)                         | 113.8 (3) |
| O(B)—Sn(2)—C(212)       | 117.5 (1) | Sn(2)                                       | 103.9 (3) |
| O(210)-Sn(2)- $O(210')$ | 167.9 (2) | C(210)—O(210)—Li                            | 126.8 (4) |
| O(210)-Sn(2)-C(212)     | 81.1 (2)  |                                             |           |

Table 2. Selected geometric parameters (Å, °)

One Sn-atom position was solved using the Patterson heavyatom method. The remaining atoms were located using DIRDIF (Beurskens et al., 1984) and in succeeding difference Fourier syntheses. It was not possible to differentiate the hydroxy and the two methyl groups of the 2-phenylpropanol solvent molecule. Hence, these three atoms were refined as C atoms without attached H atoms. All other H atoms were located and included in the structure-factor calculations, but their positions were not refined. The structure was refined by full-matrix least squares, where the function minimized was  $\sum w(|F_o| - |F_c|)^2$  and the weight w is defined as per the Killean & Lawrence (1969) method with the terms 0.20 and 1.0. Anomalous-dispersion effects were included in  $F_c$  (Ibers & Hamilton, 1964); the values for f' and f'' were those of Cromer (1974). The highest peak in the final difference Fourier map had a height of 0.53 Å<sup>-3</sup> with an estimated error based on  $\Delta F$ (Cruickshank, 1945) of 0.08. All calculations were performed on a VAX computer using SDP (Enraf-Nonius, 1985).

We thank the National Science Foundation (grant CHE-8915573) for support of this research.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1067). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A., Noordik, J. H., Beurskens, G., Parthasarthi, V., Bruins Slot, H. J., Haltiwanger, R. C., Strumpel, M. & Smiths, J. M. M. (1984). *DIRDIF*. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.2. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Cruickshank, D. W. T. (1949). Acta Cryst. 2, 154-157.

Enraf-Nonius (1985). *Structure Determination Package*. Enraf-Nonius, Delf, The Netherlands.

Ibers, J. A. & Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.

- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Killean, R. C. G. & Lawrence, J. L. (1969). Acta Cryst. B25, 1750-1752.
- Omae, I. (1989). J. Organomet. Chem. Lib. 21, 237.
- Smith, G. D., Visciglio, V. M., Fanwick, P. E. & Rothwell, I. P. (1992). Organometallics, 11, 1064–1071.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 2503-2508

# Three $\alpha,\beta$ -Unsaturated (Carbene)pentacarbonylchromium Complexes

EHMKE POHL, BORIS O. KNEISEL AND REGINE HERBST-IRMER\*

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany

ARMIN DE MELIERE, FRANK FUNKE AND FRANK STEIN

Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany

(Received 21 February 1995; accepted 10 May 1995)

#### Abstract

The syntheses and crystal structures of [(2E)-1-amino-3-dimethylamino-3-phenylpropen-1-ylidene]pentacarbonylchromium,  $[Cr(C_{11}H_{14}N_2)(CO)_5]$ , pentacarbonyl[(2E)-3-dibenzylamino-1-ethoxy-6,6-dimethylhept-2-en-4ynylidene]chromium,  $[Cr(C_{25}H_{29}NO)(CO)_5]$ , and pentacarbonyl(4-dibenzylamino-5,5-dimethyl-2,5-dihydro-2-furylidene)chromium,  $[Cr(C_{20}H_{21}NO)(CO)_5]$ , are reported. All compounds show significant  $\pi$  delocalization over the carbene fragment.

#### Comment

 $\alpha,\beta$ -Unsaturated (carbene)chromium complexes have become important reagents in synthetic organic chemistry. With appropriate substituents at the carbene C atom and/or the vinyl terminus, they react with alkynes in a number of ways to give various ring systems. The addition of ammonia to (alkynylcarbene)chromium complexes leads either to [(Z)-2-aminoethynyl]carbene complexes or to (1-aminoethynyl)carbene complexes; this can be controlled by temperature variations (Stein, Duetsch, Pohl, Herbst-Irmer & de Meijere, 1993).

The reaction of (1-ethoxy-3-phenylpropynylidene)pentacarbonylchromium, (1), with ammonia afforded exclusively the substitution product (2) in 96% yield at room temperature (Stein, 1993). Michael-type addition of dimethylamine yielded [(2E)-1-amino-3-dimethyl-amino-3-phenylpropen-1-ylidene]pentacarbonylchromium, (3), in 96% yield as yellow crystals. The



structure was determined by X-ray crystallography to confirm the *E* configuration of the C2=C3 double bond. The bond lengths and angles agree with values found for pentacarbonyl{(2-dimethylaminoethenyl)[(methoxy)phenylmethylenamino] carbene}chromium (Wienand, Reissig, Fischer & Hofman, 1989). The planar environment of N1 and N4 indicates  $\pi$  delocalization over the N atoms. The mean deviation from the least-squares plane through Cr1, C1, N1, C2, C3, C31 and N4 is 0.193 Å.

The first 1,3-diynylcarbenechromium complex, (5), was synthesized from the hexadiyne (4) in 38% yield (Funke & de Meijere, 1995). The reaction of the complex (5) with dibenzylamine gave a selective Michael-type addition to the C3 atom of (5) and only the *E* isomer of the orange coloured complex (6) (98% yield) was formed; this had to be proved by X-ray crystallography. The ethoxyethenylcarbene ligand is almost planar (the mean deviation from the least-squares plane through Cr, C1, O1, N1, C2, C3 and C4 is 0.055 Å). The C4=C5 bond distance of 1.195 (3) Å is typical for a C=C triple bond.



This new functionalized  $\alpha,\beta$ -unsaturated (carbene)chromium complex (6) is useful for cycloaddition to alkynes, yielding various ring systems with interesting functional groups (Funke & de Meijere, 1995).

Treatment of the dibenzylamino(trimethylsilyloxy)substituted complex (7) with tetra-*n*-butylammonium fluoride (TBAF) in THF afforded pentacarbonyl(4-dibenzylamino-5,5-dimethyl-2,5-dihydro-2-furylidene)chromium, (8), in 79% yield, by intramolecular substitution of the ethoxy group (Stein, Duetsch, Noltemeyer & de Meijere, 1993; Lattuada, Licandro, Maiorana, Molinari & Papagni, 1991; Christophers & Dötz, 1993). The structure assignment was confirmed by the X-ray crystal structure determination.



Compound (8) showed very low reactivity towards electrophilic addition of various reagents to the formal C4—C5 double bond. The crystal structure of (8) shows a five-membered central planar ring (the mean deviation from least-squares plane through Cr1, C1, O2, C3, C4, C5 and N6 is 0.015 Å). This planarity, the planar coordination environment around N6, and the bond lengths found for N6—C4, C1—C5 and C1—Cr1 indicate delocalization of the double bond within the core unit.

The carbene fragment in (3) is less planar than in (6) and (8). The shortest  $C_{carbene}$ — $C_{olefin}$  distance was found for (8) and the longest for (3); the shortest C==C double bond was observed in (3). This indicates that the degree for  $\pi$  delocalization is highest in (8) and lowest in (3). However, the  $C_{carbene}$ —Cr distances are comparable for (3) and (6), but it is significantly shorter in (8), compared with (6) and other O-substituted complexes {*e.g.* pentacarbonyl[(2*E*)-3-(diisopropylamino)-1-ethoxy-3-phenylpropylidene]chromium (Duetsch *et al.*, 1992)}.

In general, the  $C_{carbene}$ —Cr distances are shorter for the carbene complexes with O substituents than for



Fig. 1. Structure of (3) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.







Fig. 3. Structure of (8) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

the carbene complexes with N substituents {cf. pentacarbonyl[cyclohexylamino-(1-methoxyvinyl)carbene]chromium (Huttner & Lange, 1970), pentacarbonyl-[(Z)-dimethoxyvinyl]methoxycarbenechromium (Dötz, Kuhn & Thewalt, 1985), pentacarbonyl[(E)-3-(dimethylamino)-1-methoxypropylidene]chromium (Lattuada *et al.*, 1988)}.

All three compounds show almost ideal octahedral coordination around the Cr atom. The C—Cr distance of the carbonyl group *trans* to the carbene centre is between 0.02 and 0.04 Å shorter than the C—Cr distances to the other carbonyl ligands, as is usual in Fischer carbene complexes (Fischer, 1974).

## Experimental

# Compound (3)

Crystal data [Cr(C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>)(CO)<sub>5</sub>]  $M_r = 366.29$ Orthorhombic  $P2_12_12$  a = 12.658 (1) Å b = 14.186 (2) Åc = 9.527 (1) Å

Mo  $K\alpha$  radiation  $\lambda = 0.71073$  Å Cell parameters from 68 reflections  $\theta = 10-12.5^{\circ}$   $\mu = 0.695$  mm<sup>-1</sup> T = 293 (2) K

$$V = 1710.7 (3) \text{ Å}^{3}$$
  
 $Z = 4$   
 $D_x = 1.422 \text{ Mg m}^{-3}$ 

# Data collection

Stoe Huber four-circle diffractometer Profile data from  $2\theta/\omega$  scans Absorption correction:  $\psi$  scan (North, Phillips & Mathews, 1968)  $T_{min} = 0.845$ ,  $T_{max} =$ 0.952 7116 measured reflections 3974 independent reflections 3009 observed reflections

 $[I > 2\sigma(I)]$ 

### Refinement

Crl

C21

O21 C22

O22

C23

C24

O24

C25 O25

CI

N1

C2 C3

N4 C4 C5 C31

C32 C33

C34 C35

C36

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.0405$   $wR(F^2) = 0.1055$  S = 1.033 3974 reflections 226 parameters  $w = 1/[\sigma^2(F_o^2) + (\ 0.0483P)^2 + 0.4169P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$ 

Block  $0.6 \times 0.3 \times 0.3 \text{ mm}$  Yellow

 $R_{int} = 0.0362$   $\theta_{max} = 27.60^{\circ}$   $h = -16 \rightarrow 16$   $k = -18 \rightarrow 18$   $l = -12 \rightarrow 12$ 3 standard reflections frequency: 90 min intensity decay: none

 $\Delta \rho_{max} = 0.688 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.236 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4) Absolute configuration: Flack (1983) parameter = 0.48 (3)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  for (3)

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$ 

| x           | у           | Z           | $U_{eo}$    |
|-------------|-------------|-------------|-------------|
| 0.87583 (4) | 0.15650 (3) | 0.03132 (5) | 0.04188 (13 |
| 0.9659 (2)  | 0.1362 (2)  | -0.1203(3)  | 0.0495 (8)  |
| 1.0205 (2)  | 0.1217 (2)  | -0.2135(3)  | 0.0679 (7)  |
| 0.9238 (3)  | 0.2816 (3)  | 0.0542 (4)  | 0.0545 (8)  |
| 0.9528 (2)  | 0.3567 (2)  | 0.0685 (4)  | 0.0917 (10) |
| 0.8207 (2)  | 0.0329 (2)  | 0.0144 (4)  | 0.0521 (7)  |
| 0.7866 (2)  | -0.0407 (2) | -0.0015(3)  | 0.0769 (8)  |
| 0.9835 (3)  | 0.1201 (2)  | 0.1576 (3)  | 0.0462 (7)  |
| 1.0492 (2)  | 0.1010 (2)  | 0.2335 (3)  | 0.0651 (7)  |
| 0.7683 (3)  | 0.1985 (3)  | -0.0880(4)  | 0.0538 (8)  |
| 0.7020 (2)  | 0.2248 (2)  | -0.1609(3)  | 0.0851 (9)  |
| 0.7731 (2)  | 0.1735 (2)  | 0.2044 (3)  | 0.0410 (6)  |
| 0.7114 (2)  | 0.2488 (2)  | 0.2130 (3)  | 0.0545 (7)  |
| 0.7715 (2)  | 0.1068 (2)  | 0.3165 (3)  | 0.0452 (7)  |
| 0.7027 (2)  | 0.0964 (2)  | 0.4262 (3)  | 0.0418 (6)  |
| 0.7273 (2)  | 0.0434 (2)  | 0.5395 (3)  | 0.0527 (6)  |
| 0.6507 (3)  | 0.0060 (3)  | 0.6390 (4)  | 0.0653 (10) |
| 0.8342 (3)  | 0.0053 (3)  | 0.5561 (4)  | 0.0738 (12) |
| 0.5937 (2)  | 0.1375 (2)  | 0.4242 (3)  | 0.0416 (6)  |
| 0.5257 (2)  | 0.1143 (2)  | 0.3165 (3)  | 0.0454 (7)  |
| 0.4240 (2)  | 0.1487 (3)  | 0.3147 (4)  | 0.0543 (8)  |
| 0.3899 (3)  | 0.2079 (3)  | 0.4193 (4)  | 0.0628 (9)  |
| 0.4573 (3)  | 0.2333 (3)  | 0.5253 (4)  | 0.0627 (9)  |
| 0.5600(2)   | 0.1987(3)   | 0 5292 (4)  | 0.0534(7)   |

## Table 2. Geometric parameters (Å, °) for (3)

| Cr1-C21<br>Cr1-C25<br>Cr1-C22<br>Cr1-C22<br>Cr1-C24<br>Cr1-C23<br>Cr1-C1 | 1.862 (3)<br>1.871 (3)<br>1.889 (4)<br>1.890 (3)<br>1.895 (3)<br>2.114 (3) | C1—C2<br>C2—C3<br>C3—N4<br>C3—C31<br>N4—C4 | 1.427 (4)<br>1.368 (4)<br>1.352 (4)<br>1.498 (4)<br>1.456 (4) |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|
| Cr1—C1                                                                   | 2.114 (3)                                                                  | N4C5                                       | 1.466 (4)                                                     |
|                                                                          |                                                                            |                                            |                                                               |

| C21                                                            | 1.144 (4)<br>1.135 (4)<br>1.139 (4)<br>1.135 (4)<br>1.151 (4) | C31—C32<br>C31—C36<br>C32—C33<br>C33—C34<br>C34—C35   | 1.380 (4)<br>1.391 (4)<br>1.377 (4)<br>1.373 (5)<br>1.370 (5) | Table 3.<br>isot | Fraction<br>Tropic disp<br>U <sub>ec</sub> | al atomic<br>placement $\mu_1 = (1/3) \sum_i \sum_j \sum_{j=1}^{j-1} \sum_$ | coordi<br>param<br>SjUijai d | inates and e<br>eters (Ų) fo<br>a;*ai.aj. | equivalent<br>r (6) |
|----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|---------------------|
| C1-N1                                                          | 1.326 (4)                                                     | C35—C36                                               | 1.389 (4)                                                     |                  | r                                          | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 7                                         | Um                  |
| C21_Cr1_C25                                                    | 91 32 (15)                                                    | 025_C25_Crl                                           | 179.6 (3)                                                     | Cr               | 0 63406 (3)                                | 0 50677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3)                          | 0 75943 (3)                               | 0.02443(13)         |
| $C_{21} = C_{11} = C_{23}$                                     | 91.32(13)<br>92.20(15)                                        | N1_C1_C2                                              | 1187(3)                                                       | C13              | 0.6685 (2)                                 | 0.6514 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.8889(2)                                 | 0.0297(5)           |
| $C_{21} = C_{11} = C_{22}$                                     | 92.20(13)                                                     | $N_1 = C_1 = C_2$                                     | 170.1(2)                                                      | 013              | 0.6885(2)                                  | 0.74113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (15)                         | 0.0009(2)                                 | 0.0297(3)           |
| $C_{23}$ $C_{11}$ $C_{24}$                                     | 90.2 (2)                                                      | $C^2 - C^1 - C^1$                                     | 120.1(2)<br>121.1(2)                                          | C14              | 0.0009(2)<br>0.7239(2)                     | 0.5955 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1 <i>5)</i><br>7)           | 0.50847(14)                               | 0.0311(5)           |
| $C_{21} = C_{11} = C_{24}$                                     | 176 9 (2)                                                     | $C_{2}$                                               | 121.1(2)<br>1307(3)                                           | 014              | 0.7239(2)                                  | 0.6511 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.6704(2)                                 | 0.0479(5)           |
| $C_{23} - C_{r1} - C_{24}$                                     | 87.24 (15)                                                    | $N_{4}$ C3 C2                                         | 120.7(3)                                                      | C15              | 0.7779(2)<br>0.7854(2)                     | 0.4658 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0303(2)<br>0.8203(2)                    | 0.0370(5)           |
| $C_{22}$ $C_{1}$ $C_{24}$ $C_{21}$ $C_{11}$ $C_{23}$           | 90.94(13)                                                     | N4 - C3 - C31                                         | 121.5(3)                                                      | 015              | 0.7054(2)<br>0.8746(2)                     | 0.4416 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.8596 (2)                                | 0.0490 (5)          |
| $C_{21} = C_{11} = C_{23}$                                     | 88 58 (15)                                                    | $C_{2}$                                               | 122 3 (3)                                                     | C16              | 0.5491(2)                                  | 0 4 2 4 4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2)                           | 0.0590(2)<br>0.8480(2)                    | 0.0339(6)           |
| $C_{23}$ $C_{11}$ $C_{23}$                                     | 176 67 (15)                                                   | $C_2 = C_3 = C_3 T_1$                                 | 122.3(3)                                                      | 016              | 0.5471(2)<br>0.5026(2)                     | 0 3813 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0400(2)<br>0.9082(2)                    | 0.0535(0)           |
| $C_{22}$ $C_{11}$ $C_{23}$ $C_{24}$ $C_{21}$ $C_{23}$          | 03.84(14)                                                     | $C_3 N_4 C_5$                                         | 124.7 (3)                                                     | C17              | 0.3823(2)<br>0.4823(2)                     | 0.5479 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.7032(2)                                 | 0.0370(5)           |
| $C_{24}$ $C_{11}$ $C_{23}$ $C_{21}$ $C_{21}$ $C_{11}$ $C_{12}$ | 75.04 (14)                                                    | $C_3 = N_4 = C_5$                                     | 120.2(3)                                                      | 017              | 0.4025 (2)                                 | 0.5786 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)<br>2)                     | 0.7032(2)                                 | 0.0529(5)           |
| $C_2 = C_1 = C_1$                                              | 20 44 (12)                                                    | $C_{4}^{2}$                                           | 114.2(3)                                                      | 01               | 0.5925(2)                                  | 0.3780 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (14)                         | 0.0743(2)<br>0.55122(13)                  | 0.0310(3)           |
|                                                                | 09.44 (13)<br>00.02 (12)                                      | $C_{32} = C_{31} = C_{30}$                            | 119.5 (3)                                                     |                  | 0.3802 (2)                                 | 0.20201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1-7)                        | 0.55122 (15)                              | 0.0303(4)           |
| $C_{22}$ $C_{11}$ $C_{1}$                                      | 90.02 (13)                                                    | $C_{32} = C_{31} = C_{3}$                             | 119.4 (3)                                                     | C12              | 0.3802(2)                                  | 0.2041 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)<br>2)                     | 0.5371(2)                                 | 0.0337 (0)          |
| $C_2 + C_1 - C_1$                                              | 00.73 (12)<br>96 96 (12)                                      | $C_{30}$ $C_{31}$ $C_{31}$ $C_{31}$                   | 121.1(3)                                                      | C1               | 0.2924(2)                                  | 0.1400 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.5227(3)                                 | 0.0491(7)           |
|                                                                | 80.80(13)                                                     | $C_{33} - C_{32} - C_{31}$                            | 120.5 (3)                                                     |                  | 0.0000(2)                                  | 0.3494 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)<br>2)                     | 0.0094(2)                                 | 0.0241(3)           |
|                                                                | 178.5 (3)                                                     | $C_{34}$ $C_{33}$ $C_{32}$                            | 120.1 (3)                                                     | C2               | 0.7111(2)                                  | 0.3234 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)<br>2)                     | 0.3333(2)                                 | 0.0243(3)           |
| 022—C22—CFI                                                    | 179.7 (3)                                                     | $C_{33} - C_{34} - C_{35}$                            | 120.0 (3)                                                     | C1               | 0.7123(2)                                  | 0.2350 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)<br>2)                     | 0.4311(2)<br>0.2746(2)                    | 0.0240(3)           |
| 023-C23-Crl                                                    | 1/7.1 (3)                                                     | C34—C35—C36                                           | 120.6 (4)                                                     | C4               | 0.6009(2)                                  | 0.1467 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.3746(2)                                 | 0.0259(5)           |
| 024—C24—Crl                                                    | 177.9 (3)                                                     | C35-C36C31                                            | 119.2 (3)                                                     | CS<br>CC         | 0.5158(2)                                  | 0.0097 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.3021 (2)                                | 0.0268 (5)          |
|                                                                |                                                               |                                                       |                                                               | 6                | 0.41/4(2)                                  | -0.0247 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                          | 0.2070 (2)                                | 0.0336(5)           |
| Compound (6)                                                   |                                                               |                                                       |                                                               | C61              | 0.3244 (3)                                 | 0.0369 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3)                           | 0.1551 (3)                                | 0.0612 (8)          |
| 00poullu (0)                                                   |                                                               |                                                       |                                                               | C62              | 0.4863 (3)                                 | -0.0903 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3)                           | 0.1126 (2)                                | 0.0544 (7)          |
| Crystal data                                                   |                                                               |                                                       |                                                               | C63              | 0.3474 (2)                                 | -0.1188 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)                           | 0.2535 (2)                                | 0.0429 (6)          |
| IC-(C U NO)(CO                                                 | N 1                                                           | Ma Ka madiation                                       |                                                               | NI               | 0.8239 (2)                                 | 0.2279 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.4122 (2)                                | 0.0276 (4)          |
| $[Cf(C_{25}H_{29}NO)(CO$                                       | 75]                                                           | Mo $\mathbf{K} \alpha$ radiation                      |                                                               | C7               | 0.9442 (2)                                 | 0.3127 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.4803 (2)                                | 0.0315 (5)          |
| $M_r = 551.54$                                                 |                                                               | $\lambda = 0.71073 \text{ A}$                         |                                                               | C71              | 1.0016 (2)                                 | 0.2868 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.5874 (2)                                | 0.0323 (5)          |
| Triclinic                                                      |                                                               | Cell parameters fro                                   | om 59                                                         | C72              | 0.9537 (2)                                 | 0.1792 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.6076 (2)                                | 0.0410 (6)          |
| D1                                                             |                                                               | raflactions                                           |                                                               | C73              | 1.0105 (3)                                 | 0.1574 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3)                           | 0.7045 (3)                                | 0.0604 (9)          |
|                                                                |                                                               | reflections                                           |                                                               | C74              | 1.1155 (3)                                 | 0.2405 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4)                           | 0.7820 (3)                                | 0.0734 (11)         |
| a = 10.834 (2) A                                               |                                                               | $\theta = 10 - 12.5^{\circ}$                          |                                                               | C75              | 1.1628 (3)                                 | 0.3474 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4)                           | 0.7632 (3)                                | 0.0687 (10)         |
| b = 11.745 (2) Å                                               |                                                               | $\mu = 0.444 \text{ mm}^{-1}$                         |                                                               | C76              | 1.1062 (2)                                 | 0.3714 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3)                           | 0.6669(2)                                 | 0.0473 (7)          |
| c = 12222 (2) Å                                                |                                                               | T = 153(2) K                                          |                                                               | C8               | 0.8345 (2)                                 | 0.1296 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.3082 (2)                                | 0.0324 (5)          |
| t = 12.222 (2) R                                               |                                                               | I = 155 (2) K                                         |                                                               | C81              | 0.8739 (2)                                 | 0.1766 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.2138 (2)                                | 0.0291 (5)          |
| $\alpha = 108.09(2)^{\circ}$                                   |                                                               | Block                                                 |                                                               | C82              | 0.9662(2)                                  | 0.1338 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.1559(2)                                 | 0.0348 (6)          |
| $\beta = 98.22 \ (2)^{\circ}$                                  |                                                               | $0.9 \times 0.4 \times 0.4$ m                         | m                                                             | C83              | 1.0025 (2)                                 | 0 1752 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0688(2)                                 | 0.0412(6)           |
| $\alpha = 100.11(2)^{\circ}$                                   |                                                               | Orange                                                |                                                               | C84              | 0.9479(3)                                  | 0.2610 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0000(2)                                 | 0.0412(0)           |
| $\gamma = 100.11(2)$                                           |                                                               | Orange                                                |                                                               | C85              | 0.9479(3)                                  | 0.2010 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0054(2)                                 | 0.0403(7)           |
| V = 1422.6 (4) A <sup>3</sup>                                  |                                                               |                                                       |                                                               | C85              | 0.8337(3)                                  | 0.3042 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.0934(2)<br>0.1821(2)                    | 0.0318(7)           |
| Z = 2                                                          |                                                               |                                                       |                                                               | C80              | 0.0100(3)                                  | 0.2018 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                           | 0.1621 (2)                                | 0.0422(0)           |
| $D_{\rm m} = 1.288 {\rm Mg}{\rm m}^{-1}$                       | 3                                                             |                                                       |                                                               |                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                           |                     |
| $D_{1} = 1.200$ mg m                                           |                                                               |                                                       |                                                               | _                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | · • • •                                   |                     |
| Data collection                                                |                                                               |                                                       |                                                               | Та               | ble 4. Geo                                 | ometric pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ramete                       | ers (A, °) for                            | (6)                 |
| Data conection                                                 |                                                               |                                                       |                                                               | Cr C13           |                                            | 1 862 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C6 C                         | 61                                        | 1 517 (2)           |
| Stoe Huber four-cir                                            | cle                                                           | $R_{int} = 0.0392$                                    |                                                               | $C_{1}$          |                                            | 1.802 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C6 C                         | 62                                        | 1.517 (5)           |
| diffractometer                                                 |                                                               | $A = 22.51^{\circ}$                                   |                                                               | $C_{1}$          |                                            | 1.090(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 63                                        | 1.550 (5)           |
|                                                                | ~ /                                                           | $v_{\rm max} = 22.51$                                 |                                                               | $C_1 = C_1 4$    |                                            | 1.891 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 02                                        | 1.542 (4)           |
| Profile data from 20                                           | $\theta/\omega$ scans                                         | $h = -11 \rightarrow 11$                              |                                                               |                  |                                            | 1.891 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NI-C                         | .7                                        | 1.450 (3)           |
| Absorption correction                                          | on:                                                           | $k = -12 \rightarrow 12$                              |                                                               | $C_{1}$          |                                            | 1.903 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | ð<br>71                                   | 1.462 (3)           |
| w scan (North, P                                               | hillips                                                       | $l = -11 \rightarrow 13$                              |                                                               |                  |                                            | 2.101 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | /1                                        | 1.508 (3)           |
| & Mathews 106                                                  | 8)                                                            | 3 standard reflectio                                  | no                                                            |                  |                                            | 1.152 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C71                          | C70                                       | 1.381 (3)           |
|                                                                | 0)                                                            |                                                       |                                                               | C14 - 014        |                                            | 1.142 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | C72                                       | 1.388 (3)           |
| $T_{\rm min} = 0.643, T_{\rm m}$                               | hax =                                                         | frequency: 90 m                                       | in                                                            |                  |                                            | 1.138 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C/2-4                        | C73                                       | 1.3/2 (4)           |
| 0.742                                                          |                                                               | intensity decay:                                      | none                                                          | C16016           |                                            | 1.140(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 073-0                        | L 74                                      | 1.368 (5)           |
| 4192 measured refle                                            | ections                                                       | 5 5                                                   |                                                               | 01/_01/          |                                            | 1.142 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C/4-0                        | C75                                       | 1.370 (5)           |
| 2700 in demondent                                              | - 0 :                                                         |                                                       |                                                               | 01-01            |                                            | 1.332 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C/5-4                        | C/6                                       | 1.3/9 (4)           |
| 3700 independent i                                             | enections                                                     |                                                       |                                                               | 01-011           |                                            | 1.442 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8-C                         | 81                                        | 1.507 (3)           |
| 3366 observed refle                                            | ections                                                       |                                                       |                                                               | CII—CI2          |                                            | 1.491 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C81-4                        | 086                                       | 1.377(3)            |
| $[I > 2\sigma(I)]$                                             |                                                               |                                                       |                                                               | CI_C2            |                                            | 1.418 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C81-4                        | C82                                       | 1.382 (3)           |
|                                                                |                                                               |                                                       |                                                               | C2—C3            |                                            | 1.382 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C82—                         | C83                                       | 1.378 (3)           |
| Rofinamant                                                     |                                                               |                                                       |                                                               | C3—N1            |                                            | 1.368 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C83—(                        | 284                                       | 1.369 (4)           |
| першетет                                                       |                                                               |                                                       |                                                               | C3—C4            |                                            | 1.431 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C84(                         | 285                                       | 1.373 (4)           |
| Refinement on $F^2$                                            |                                                               | $(\Delta/\sigma)_{\rm max} = 0.001$                   |                                                               | C4—C5            |                                            | 1.195 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C85—0                        | C86                                       | 1.383 (4)           |
| $D[E^2 > 2 - (E^2)] = 0$                                       | 0210                                                          | $\Delta_{0} = 0.001$                                  | -3                                                            | C5—C6            |                                            | 1.466 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                           |                     |
| $\kappa[r > 2\sigma(r)] = 0$                                   | 5.0519                                                        | $\Delta \rho_{\rm max} = 0.279 \ \text{e} \ \text{A}$ | •<br>• _ 3                                                    | C12 C- 4         | ~17                                        | 00 20 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CE C</b>                  | 4 62                                      | 172.0 (2)           |
| $wR(F^2) = 0.0853$                                             |                                                               | $\Delta \rho_{\rm min} = -0.310 \ {\rm e}$            | A <sup>-,</sup>                                               |                  | C1/                                        | 88.20 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-0                          | 4—US                                      | 1/3.0(2)            |
| S = 1.042                                                      |                                                               | Extinction correction                                 | on: none                                                      |                  | L14                                        | 89.19 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4-C                         | 3L0                                       | 1/5.9 (2)           |
| 3700 reflections                                               |                                                               | Atomic southering                                     | factors                                                       | CI/-Cr-C         | L14                                        | 89.44 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $c_{2}$                      | 0C61                                      | 109.1 (2)           |
| 2 AT                                                           |                                                               | Atomic scattering I                                   |                                                               | C13-Cr-C         | L16                                        | 88.05 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS-C                         | 6—C63                                     | 110.2 (2)           |
| 34/ parameters                                                 |                                                               | from Internation                                      | al Tables                                                     | C17—Cr—(         | 016                                        | 91.64 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C61-0                        | C63                                       | 110.9 (2)           |
| $w = 1/[\sigma^2(F_c^2) + (0$                                  | $(0409P)^2$                                                   | for Crystallogra                                      | phy (1992.                                                    | C14—Cr—C         | 216                                        | 177.00 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C5—C                         | 6C62                                      | 107.4 (2)           |
| $\pm 10077P1$                                                  | ,,                                                            | Vol C Tables 4                                        | 268 and                                                       | C13—Cr—(         | C15                                        | 90.83 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C61-0                        | C6—C62                                    | 110.0 (2)           |
| + 1.00/2F                                                      | 0.02.10                                                       | (1, 1, 4)                                             | 2.0.0 anu                                                     | C17—Cr—C         | C15                                        | 178.32 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C63—(                        | C6C62                                     | 109.2 (2)           |
| where $P = (F_o^2 -$                                           | + 2F c )/3                                                    | 0.1.1.4)                                              |                                                               | C14—Cr—(         | C15                                        | 91.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3N                          | 1—C7                                      | 120.7 (2)           |

2506

# EHMKE POHL et al.

| $\begin{array}{c} C16-Cr-C15\\ C13-Cr-C1\\ C17-Cr-C1\\ C14-Cr-C1\\ C16-Cr-C1\\ C15-Cr-C1\\ O13-C13-Cr\\ O14-C14-Cr\\ O15-C15-Cr\\ O16-C16-Cr\\ O17-Cr\\ O17-Cr\\ C1-O1-C11\\ O1-C11-C12\\ O1-C1-C2\\ O1-C1-C2\\ O1-C1-Cr\\ C2-C1-Cr\\ C3-C2-C1\\ N1-C3-C2\\ N1-C3-C4\\ C2-C3-C4\\ C2-C3-C4\\ \end{array}$ | $\begin{array}{c} 86.95 (10) \\ 175.88 (9) \\ 93.35 (9) \\ 87.01 (9) \\ 95.71 (9) \\ 87.71 (9) \\ 179.1 (2) \\ 178.0 (2) \\ 178.0 (2) \\ 176.3 (2) \\ 176.3 (2) \\ 122.0 (2) \\ 107.2 (2) \\ 110.7 (2) \\ 129.5 (14) \\ 119.75 (15) \\ 129.4 (2) \\ 120.9 (2) \\ 114.7 (2) \\ 124.4 (2) \end{array}$ | $\begin{array}{c} C3-N1-C8\\ C7-N1-C8\\ N1-C7-C71\\ C76-C71-C72\\ C76-C71-C7\\ C72-C71-C7\\ C72-C71-C7\\ C73-C72-C71\\ C74-C73-C72\\ C73-C74-C75\\ C74-C75-C76\\ C75-C76-C71\\ N1-C8-C81\\ C86-C81-C82\\ C86-C81-C82\\ C86-C81-C82\\ C86-C81-C8\\ C82-C81\\ C82-C81\\ C82-C81\\ C82-C81\\ C84-C83-C82\\ C83-C82\\ C83-C82\\ C84-C85\\ C$ | $\begin{array}{c} 123.9 \ (2) \\ 115.1 \ (2) \\ 114.7 \ (2) \\ 118.8 \ (2) \\ 119.2 \ (2) \\ 121.9 \ (2) \\ 120.3 \ (3) \\ 120.7 \ (3) \\ 120.7 \ (3) \\ 120.1 \ (3) \\ 120.1 \ (3) \\ 120.1 \ (3) \\ 112.8 \ (2) \\ 121.3 \ (2) \\ 121.3 \ (2) \\ 121.3 \ (2) \\ 120.1 \ (2) \\ 120.1 \ (2) \\ 119.5 \ (2) \\ 120.4 \ (3) \\ 120.6 \ (2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2'<br>O2'<br>C3'<br>O4'<br>C5'<br>O5'<br>C1<br>O2<br>C3<br>C3<br>C3<br>C3<br>C3<br>C4<br>C5<br>N6<br>C7<br>C71<br>C72<br>C74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.7618 \ (4) \\ 0.7947 \ (3) \\ 0.6487 \ (4) \\ 0.6135 \ (4) \\ 0.6289 \ (3) \\ 0.7698 \ (4) \\ 0.8142 \ (3) \\ 0.8917 \ (4) \\ 0.9550 \ (2) \\ 1.0895 \ (3) \\ 1.0892 \ (4) \\ 1.0958 \ (4) \\ 0.9761 \ (4) \\ 1.2006 \ (3) \\ 1.3421 \ (4) \\ 1.3411 \ (4) \\ 1.4710 \ (4) \\ 1.4915 \ (4) \\ 1.385 \ (4) \\ \end{array}$ | 0.7852 (<br>0.8302 (<br>0.6311 (<br>0.6311 (<br>0.6311 (<br>0.6480 (<br>0.719 (<br>0.7393 (<br>0.7566 (<br>0.7393 (<br>0.7566 (<br>0.6421 (<br>0.6487 (<br>0.6487 (<br>0.6487 (<br>0.6487 (<br>0.6392 (<br>0.5598 (<br>0.55 | 3)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       1         2)       1         2)       1         2)       1         2)       1         2)       1         2)       1 | 1.6926 (3)<br>1.6383 (3)<br>1.8814 (3)<br>1.9450 (3)<br>1.8578 (3)<br>1.9097 (2)<br>1.6611 (3)<br>1.6690 (2)<br>1.8527 (3)<br>1.8986 (2)<br>1.9465 (3)<br>1.9465 (3)<br>1.9212 (3)<br>1.8867 (3)<br>1.9212 (3)<br>1.8667 (3)<br>1.9466 (2)<br>.0096 (3)<br>.1161 (3)<br>.1635 (3)<br>.2622 (3)<br>.2141 | 0.0331 (10)<br>0.0532 (9)<br>0.0372 (11)<br>0.0643 (11)<br>0.0301 (10)<br>0.0445 (8)<br>0.0314 (10)<br>0.0466 (8)<br>0.0285 (10)<br>0.0328 (7)<br>0.0271 (9)<br>0.0345 (10)<br>0.0346 (10)<br>0.0288 (9)<br>0.0281 (10)<br>0.0252 (9)<br>0.0314 (10)<br>0.0366 (11)<br>0.0366 (11) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound (8)                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C74<br>C75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3825 (4)<br>1.2545 (4)                                                                                                                                                                                                                                                                                                                      | 0.5362 (<br>0.5447 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2) 1<br>2) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .3141 (3)<br>.2674 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0365 (11)<br>0.0325 (10)                                                                                                                                                                                                                                                         |
| <b>Compound (8)</b><br><i>Crystal data</i><br>[Cr(C <sub>20</sub> H <sub>21</sub> NO)(CO)<br>$M_r = 483.43$<br>Monoclinic<br>$P2_1/c$<br>a = 9.950 (1) Å                                                                                                                                                  | 5]                                                                                                                                                                                                                                                                                                   | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å<br>Cell parameters from<br>reflections<br>$\theta = 10-12.5^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C76<br>C8<br>C81<br>C82<br>C83<br>C84<br>C85<br>C86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2343 (4)<br>1.1928 (4)<br>1.1916 (3)<br>1.1251 (4)<br>1.1270 (4)<br>1.1270 (4)<br>1.2597 (4)<br>1.2587 (4)                                                                                                                                                                                                                                  | 0.5447 (<br>0.5782 (<br>0.5448 (<br>0.5346 (<br>0.4775 (<br>0.4656 (<br>0.5125 (<br>0.5693 (<br>0.5811 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2)       1         2)       1         2)       0         2)       0         2)       0         3)       0         3)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0         2)       0                                                                                                                                                                                                                  | .16974 (3)<br>.1691 (3)<br>.9119 (3)<br>.7915 (3)<br>.7438 (3)<br>.6348 (3)<br>.6728 (3)<br>.6195 (3)<br>.7291 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0325 (10)<br>0.0299 (10)<br>0.0292 (10)<br>0.0255 (9)<br>0.0327 (10)<br>0.0409 (12)<br>0.0390 (11)<br>0.0387 (11)<br>0.0330 (10)                                                                                                                                                 |
| b = 18.856 (4)  Å<br>c = 12.522 (2)  Å                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                      | $\mu = 0.528 \text{ mm}^{-1}$<br>T = 153 (2) K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selector                                                                                                                                                                                                                                                                                                                                      | l acometri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c param                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ators (Å o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for( <b>8</b> )                                                                                                                                                                                                                                                                    |
| $\beta = 94.30 (1)^{\circ}$<br>$V = 2342.7 (7) \text{ Å}^{3}$<br>Z = 4<br>$D_x = 1.371 \text{ Mg m}^{-3}$                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      | Block<br>$0.5 \times 0.5 \times 0.4$ mm<br>Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cr1-C1'<br>Cr1-C2'<br>Cr1-C5'<br>Cr1-C4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Scieciei                                                                                                                                                                                                                                                                                                                                    | 1.862 (4)<br>1.879 (5)<br>1.883 (5)<br>1.887 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1C5<br>02C3<br>C3C4<br>C3C31                                                                                                                                                                                                                                                                                                                                                                                                                                                      | elers (A, )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.409 (6)<br>1.468 (4)<br>1.514 (6)<br>1.521 (5)                                                                                                                                                                                                                                   |
| Data collection                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cr1—C3'<br>Cr1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               | 1.902 (5)<br>2.047 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C3—C32<br>C4—N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.524 (5)<br>1.331 (5)                                                                                                                                                                                                                                                             |
| Stoe Huber four-circ<br>diffractometer<br>Profile data from 20,<br>Absorption correctio                                                                                                                                                                                                                   | le<br>Ιω scans<br>n:                                                                                                                                                                                                                                                                                 | $R_{int} = 0.0382$<br>$\theta_{max} = 22.53^{\circ}$<br>$h = -10 \rightarrow 10$<br>$k = -20 \rightarrow 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1'01'<br>C2' - 02'<br>C3' - 03'<br>C4' - 04'<br>C5' - 05'<br>C1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               | 1.154 (4)<br>1.150 (5)<br>1.139 (5)<br>1.151 (5)<br>1.149 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C4—C5<br>N6—C8<br>N6—C7<br>C7—C71<br>C8—C81                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.374 (5)<br>1.460 (5)<br>1.462 (5)<br>1.507 (5)<br>1.518 (5)                                                                                                                                                                                                                      |
| none<br>6685 measured reflect<br>3021 independent re<br>2252 observed reflect<br>$[l > 2\sigma(l)]$                                                                                                                                                                                                       | ctions<br>flections<br>ctions                                                                                                                                                                                                                                                                        | $l = -13 \rightarrow 13$<br>3 standard reflection<br>frequency: 90 mir<br>intensity decay: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IS<br>1<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1'-Cr1-<br>C1'-Cr1-<br>C2'-Cr1-<br>C1'-Cr1-<br>C1'-Cr1-<br>C2'-Cr1-<br>C5'-Cr1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2'<br>C5'<br>C5'<br>C4'<br>C4'<br>C4'<br>C4'                                                                                                                                                                                                                                                                                                 | 89.4 (2)<br>92.3 (2)<br>87.6 (2)<br>93.4 (2)<br>177.0 (2)<br>91.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02C1<br>02C1<br>C5C1<br>C102<br>02C3<br>02C3<br>02C3<br>02C3                                                                                                                                                                                                                                                                                                                                                                                                                       | -C5<br>-Crl<br>-Crl<br>-C3<br>-C4<br>-C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.8 (3)<br>122.5 (3)<br>128.7 (3)<br>111.8 (3)<br>101.5 (3)<br>106.2 (3)                                                                                                                                                                                                         |
| Refinement                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1' - Cr1 | C3'                                                                                                                                                                                                                                                                                                                                           | 91.0 (2)<br>91.4 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C4—C3—<br>02—C3—                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -C31<br>-C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114.6 (3)<br>105.1 (3)                                                                                                                                                                                                                                                             |
| Refinement on $F^2$<br>$R[F^2 > 2\sigma(F^2)] = 0.$<br>$wR(F^2) = 0.1124$<br>S = 1.074<br>3020 reflections<br>300 parameters<br>$w = 1/[\sigma^2(F_o^2) + (0.$<br>+ 3.9566P]<br>where $P = (F_o^2 + 1)^2$                                                                                                 | (0428)<br>$(0323P)^2$<br>$(2F_c^2)/3$                                                                                                                                                                                                                                                                | $(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.337 \text{ e Å}^{-1}$<br>$\Delta\rho_{min} = -0.349 \text{ e Å}^{-1}$<br>Extinction correction<br>Atomic scattering fa<br>from Internationa<br>for Crystallograph<br>Vol. C, Tables 4.2<br>6.1.1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>$rac{1}{3}$<br>rac | C5' Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3'<br>C3'<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1<br>C1                                                                                                                                                                                                                                                            | 176.6 (2)<br>89.6 (2)<br>178.7 (2)<br>90.4 (2)<br>86.5 (2)<br>86.8 (2)<br>90.2 (2)<br>177.5 (4)<br>176.7 (4)<br>178.5 (3)<br>177.7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4—C3—<br>C31—C3-<br>N6—C4—<br>C5—C4—<br>C5—C4—<br>C4—C5—<br>C4—N6—<br>C4—N6—<br>C8—N6—<br>C8—N6—<br>N6—C7—<br>N6—C8—                                                                                                                                                                                                                                                                                                                                                              | C32<br>-C32<br>-C3<br>-C3<br>-C3<br>-C3<br>-C3<br>-C1<br>-C8<br>-C7<br>-C7<br>-C7<br>-C71<br>-C81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.0 (3)<br>113.7 (3)<br>126.8 (4)<br>125.3 (3)<br>107.9 (3)<br>110.0 (4)<br>118.4 (3)<br>125.6 (3)<br>115.9 (3)<br>113.2 (3)<br>114.3 (3)                                                                                                                                        |

Table 5. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å<sup>2</sup>) for (8)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|     | х           | у           | Ζ           | $U_{ea}$    |
|-----|-------------|-------------|-------------|-------------|
| Crl | 0.70411 (6) | 0.70898 (4) | 0.77426 (5) | 0.0263 (2)  |
| C1′ | 0.5349 (4)  | 0.7144 (2)  | 0.7003 (3)  | 0.0307 (10) |
| 01' | 0.4313 (3)  | 0.7203 (2)  | 0.6532 (2)  | 0.0466 (8)  |

Data for all three compounds were collected using a profilefitting method (Clegg, 1981). The crystals of (6) and (8) were cooled using a locally built low-temperature device (Kottke, 1993). The structures were solved by direct methods and refined by full-matrix least-squares methods on  $F^2$ . All H atoms were included in calculated positions and refined using a riding model, except the H atoms at N1 of compound (3), which were refined with distance restraints. The isotropic displacement parameters were set to 1.2 times (1.5 for methyl groups) the equivalent isotropic displacement parameters of the atoms to which the H atoms are bonded. For all methyl groups one torsion angle was refined. Compound (3) was refined as a racemic twin using the method of Flack (1983).

For all compounds, data collection: *DIF*4 (Stoe & Cie, 1988*a*); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1988*b*); program(s) used to solve structures: *SHELX90* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1994); software used to prepare material for publication: *SHELXL93*.

We are grateful to the Volkswagen Stiftung, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. EP is grateful to the Stiftung Stipendienfonds im Verband der Chemischen Industrie for a fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1049). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

# References

- Christophers, J. & Dötz, K. H. (1993). J. Chem. Soc. Chem. Commun. pp. 1811-1812.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Dötz, K. H., Kuhn, W. & Thewalt, U. (1985). Chem. Ber. 118, 1126– 1132.
- Duetsch, M., Stein, F., Lackmann, R., Pohl, E., Herbst-Irmer, R. & de Meijere, A. (1992). Chem. Ber. 125, 2051–2065.
- Fischer, E. O. (1974). Angew. Chem. 86, 651-682.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Funke, F. & de Meijere, A. (1995). In preparation.
- Huttner, G. & Lange, S. (1970). Chem. Ber. 103, 3149-3158.
- Kottke, T. (1993). Dissertation, Univ. of Göttingen, Germany.
- Lattuada, L., Licandro, E., Maiorana, S., Molinari, H. & Papagni, A. (1991). Organometallics, 10, 807–812.
- Lattuada, L., Licandro, E., Papagni, A., Maiorana, S., Villa, A. C. & Guastini, C. (1988). J. Chem. Soc. Chem. Commun. pp. 1092–1093.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1994). SHELXTL-Plus. Release 5.01. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stein, F. (1993). Dissertation, Univ. of Göttingen, Germany.
- Stein, F., Duetsch, M., Noltemeyer, M. & de Meijere, A. (1993). Synlett, pp. 486-488.
- Stein, F., Duetsch, M., Pohl, E., Herbst-Irmer, R. & de Meijere, A. (1993). Organometallics, 12, 2556-2564.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU*4. *Data Reduction Program*. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Wienand, A., Reissig, H. U., Fischer, H. & Hofman, J. (1989). Chem. Ber. 122, 1589–1592.

Acta Cryst. (1995). C51, 2508–2510

# A Cationic Rhenium–Platinum Complex: fac-Tricarbonylrhenium-bis[ $\mu$ -methylaminobis(difluorophosphine)]-triphenylphosphineplatinum Trifluoromethanesulfonate

JOEL T. MAGUE AND ZHAIWEI LIN

Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

(Received 10 February 1995; accepted 16 May 1995)

#### Abstract

The title compound, fac-tricarbonyl- $1\kappa^3 C$ -bis [ $\mu$ -methylaminobis(difluorophosphine)- $1\kappa P: 2\kappa P'$ ]triphenyl-phosphine - $2\kappa P$ -platinumrhenium (Pt—Re) trifluoro-methanesulfonate, [PtRe(CO)<sub>3</sub>(CH<sub>3</sub>F<sub>4</sub>NP<sub>2</sub>)<sub>2</sub>(C<sub>18</sub>H<sub>15</sub>P)]-CF<sub>3</sub>SO<sub>3</sub>, exhibits distorted octahedral and square-planar coordination about the Re and Pt atoms, respectively. A Pt—Re single bond of length 2.818 (1) Å is present.

#### Comment

Previous studies of the 'metalloligands' CpMCl{ $\eta^1$ -MeN(PF<sub>2</sub>)<sub>2</sub>  $\{M = \text{Fe}, \text{Ru}\}$  and fac-ReBr(CO)<sub>3</sub> $(\eta^1 - L_2)_2$  $[L_2 = MeN(PF_2)_2, CH_2(PMe_2)_2 (dmpm)]$  (Mague & Lin, 1992, 1994; Mague, 1994) have shown them to be useful for the directed synthesis of heterobimetallic complexes. To date, the reactions of these complexes have proven quite limited; in an attempt to increase reactivity, the weakly bound Br ligand in fac-Re(CO)<sub>3</sub>{ $\mu$ - $MeN(PF_2)_2$  PtBr(PPh<sub>3</sub>), (2) (Mague & Lin, 1994), was removed by reacting with silver trifluoromethanesulfonate to give the title compound, (1). Little increase in the reactivity of (1) over its precursor was seen, suggesting that the trifluoromethanesulfonate ion might be coordinated in place of the Br atom. As spectroscopic data were inconclusive on this point, the structure of (1)was determined by X-ray analysis.



In the crystal form, (1) consists of well separated  $[\text{Re}(\text{CO})_3{\mu-\text{MeN}(\text{PF}_2)_2}_2\text{Pt}{P(C_6H_5)_3}]^+$  cations and  $\text{CF}_3\text{SO}_3^-$  anions. Both ions have crystallographically imposed mirror symmetry and while the displacement

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved